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Addition of cellulolytic enzymes and phytase for improving ethanol
fermentation performance and oil recovery in corn dry grind process

Abstract
Application of hydrolytic and other enzymes for improving fermentation performance and oil recovery in
corn dry-grind process was optimized. Non-starch polysaccharide enzymes (BluZy-P XL; predominantly
xylanase activity) were added at stages prior to fermentation at optimum conditions of 50 ◦C and pH 5.2 and
compared with conventional fermentation (30 ◦C, pH 4.0). Enzyme applications resulted in faster ethanol
production rates with a slight increase in yield compared to control. The thin stillage yield increased by
0.7–5% w/w wet basis with corresponding increase in solids content with enzyme treatment after
liquefaction. The oil partitioned in thin stillage was at 67.7% dry basis after treatment with hydrolytic enzymes
during fermentation. Further addition of protease and phytase during simultaneous saccharification and
fermentation increased thin stillage oil partitioning to 77.8%. It also influenced other fermentation
parameters, e.g., ethanol production rate increased to 1.16 g/g dry corn per hour, and thin stillage wet solids
increased by 2% w/w. This study indicated that treatments with non-starch hydrolytic enzymes have potential
to improve the performance of corn dry-grind process including oil partitioning into thin stillage. The novelty
of this research is the addition of protease and phytase enzymes during simultaneous saccharification and
fermentation of corn dry-grind process, which further improved ethanol yields and oil partitioning into thin
stillage.
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Abstract 

Application of hydrolytic and other enzymes for improving fermentation performance and oil 

recovery in corn dry-grind process was optimized. Non-starch polysaccharide enzymes (BluZy-P 

XL; predominantly xylanase activity) were added at stages prior to fermentation at optimum 

conditions of 50°C and pH 5.2 and compared with conventional fermentation (30°C, pH 4.0). 

Enzyme applications resulted in faster ethanol production rates with a slight increase in yield 

compared to control. The thin stillage yield increased by 0.7-5% w/w wet basis with 

corresponding increase in solids content with enzymes treatment after liquefaction.  The oil 

partitioned in thin stillage was at 67.7% dry basis after treatment with hydrolytic enzymes during 

fermentation. Further addition of protease and phytase during simultaneous saccharification and 

fermentation increased thin stillage oil partitioning to 77.8%.  It also influenced other 

fermentation parameters, e.g., ethanol production rate increased to 1.16 g /g dry corn per h and 

thin stillage wet solids increased by 2% w/w.  This study indicated that treatments with non-

starch hydrolytic enzymes have potential to improve the performance of corn dry-grind process 

including oil partitioning into thin stillage. The novelty of this research is the addition of protease 

and phytase enzymes during simultaneous saccharification and fermentation stage of corn dry-

grind process, which further improved ethanol yields and oil partitioning into thin stillage. 

Keywords: Corn Dry-grinding, Ethanol, Oil Recovery, Fibers, Hydrolytic Enzymes

 

1. Introduction. 

The US corn production in 2014 was approximately 14.2 billion bushels, with roughly 30% 

utilized for ethanol production (NCGA, 2015). Ethanol has been the most significant source of 

total biofuel usage in the US (94%), of which about 82% is produced using corn dry-grind 
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process (Wang, 2009a). In this process, ground corn is liquefied, saccharified, and fermented to 

convert monomeric glucose to ethanol. Non-fermentable residues result in a coproduct called 

distiller's dried grains with solubles (DDGS) after separation and drying with condensed solubles 

of thin stillage. On dry basis, DDGS usually contains 27.4, 11.7, 4.4, and 56.5% w/w of protein, 

oil, ash, and total carbohydrate, respectively (Liu, 2008). Approximately 40 million tons of 

DDGS were produced in 2012 and projected to reach 43 million tons in 2014 (Wisner, 2014). 

DDGS are also utilized as animal feed, with various incorporation levels for cattle and non-

ruminant animals, higher fiber percentages limiting usage in the latter. Ethanol producers need to 

improve desirable characteristics in DDGS as animal feed to enhance its incorporation levels. 

Application of hydrolytic and other enzymes during processing could modify non-starch 

polysaccharides (NSP) more favorably for feed application and recover more oil upstream to 

make the process more profitable. 

Corn oil is a higher-value coproduct of corn dry-grind process and is concentrated from 

4% in corn kernel to about 14% in DDGS (Wang, 2008a, 2008b). Higher levels of oil in DDGS 

are sometimes undesirable and affect feed quality negatively; for example, higher amounts of oil 

could interfere with milk production in cattle and bacon texture in DDGS-fed swine (Wang, 

2009b). Recovery of corn oil from the stillage will create a higher-value product stream than 

DDGS. Technologies for corn oil recovery from dry grind process are reported in the literature. 

Effect of physical treatments like grinding and flaking (Lamsal and Johnson, 2012), heating and 

solvent introduction before and after the corn dry-grind process (Majoni, 2011a; Wang 2008a, 

2009a) were reported to enhance process performance.  Use of hydrolytic enzymes is an 

environment-friendly and affordable method that can benefit corn dry-grind process (Johnston 

and McAloon, 2014), including recovery of corn oil (Majoni, 2011b). 
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Corn oil is mostly stored in germ cells as oil bodies or oleosomes and is secluded by 

phospholipids and layer of oleosin, an alkaline protein (Huang, 1996; Danso-boateng, 2011). 

During corn dry-grind process, oil bodies can be trapped between non-starch polysaccharide and 

protein matrix. Addition of protease and NSP hydrolyzing enzymes during the corn dry-grinding 

process can degrade such barriers and enhance oil recovery.  Proteases are also suggested for free 

amino nitrogen production and utilization by yeast during fermentation (Vidal, 2010) that could 

result in higher ethanol production rates and yields. 

This study compared the performance of corn dry-grind process upon addition of NSP 

hydrolytic enzyme cocktail (BluZy-P XL) and other enzymes.  The application of BluZy-P XL 

cocktail, provided by Direvo Industrial Biotechnology GmbH (Cologne, Germany), during the 

simultaneous saccharification and fermentation (SSF) at 30°C for 60 h was compared with 

treatments at optimal enzyme conditions (pH, temperature, and process stages).  Combination of 

the said enzyme cocktail with protease and phytase in corn dry-grinding process was also 

compared for enhanced performance indicators. 

2. Materials and Methods 

Yellow dent #2 corn used in the study was obtained from Iowa State University’s 

research farm and stored at 15% moisture content in airtight bags placed inside an airtight plastic 

bin at 4°C. Corn contained 67% starch, 7% protein, and 3% lipid w/w on wet basis, the 

remainder being fiber, ash, and moisture. Corn was ground by using a hammer mill (Fitz Mill 

model DAS 06; Fitzpatrick Co., Elmhurst, IL) at 5,000 rpm with 3.18 mm screen opening 

(screen # 1531-0125). The ground corn meal had a particle size distribution of 4, 22, and 74 w/w 

% retained on mesh numbers 20, 12, and pan, respectively. 
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Liquid α-amylase Spezyme Xtra (13,642 R-amylase units/g) and protease GC 212 (2000 

SAP units/g; SAP, spectrophotometer acid protease) were provided by Genecor international 

(Palo Alto, CA). Glucoamylase Spirizyme Excel XHS (Novozymes, Franklinton, NC), phytase 

Phytaflow (20,000 FYT/g, Novozymes, Bagsvaerd, Denmark), and dry yeast (Saccharomyces 

Cerevisiae) were provided by Lincoln way Energy (Neveda, IA). Lactrol (462 g virginiamycin 

/lb) was purchased from PhibroChem (Ridgefield Park, NJ).  The BluZy-P XL enzymes cocktail, 

with mostly xylanase activity, was acquired from Direvo Industrial Biotechnology GmbH 

(Cologne, Germany). Other chemicals were purchased from Fisher Scientific (Pittsburgh, PA). 

2.1 Optimal Temperature and pH conditions for addition of enzymes cocktail 

The enzyme cocktail BluZy-P XL obtained from the company was experimental mix with 

a broad range of temperature and pH conditions, which needed narrowing down for best 

performance in corn dry-grind process being followed. Ground corn was mixed with distilled 

water at the ratio of 1:2 in 250-mL Erlenmeyer flaks for a total slurry weight of 200 g. For pH 

and temperature optimization experiments, the pH of slurry was adjusted to 3.8, 4.5, and 5.2 with 

6.0 N sulfuric acid and incubated in incubator shaker at 150 rpm at 35, 42, and 50°C for 1 h. This 

range of temperature and pH was chosen following enzyme data sheet that showed a broader 

activity range. BluZy-P XL cocktail (400 ppm) was added and shaken steadily in incubator 

shaker at 150 rpm for 1.5 h (Innova 4300 incubator shaker, New Brunswick Scientific, NJ). The 

treated corn slurries were centrifuged to collect supernatant at 10,000 × g for 15 min (Sorvall 

Legend XTR Centrifuge, Fisher Scientific) and filtrated through 0.2μm filter for sugar analysis 

with HPLC. Triplicate experimental runs were carried out. 

2.2 Application of hydrolytic enzymes cocktail BluZy-P XL and processing stages 
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Once the optimal working conditions for were arrived at, enzyme cocktail was then 

evaluated for its effectiveness in improving downstream fermentation by applying at three 

processing stages: post-grinding (Treatment A), post-liquefaction (Treatment B), and during 

simultaneous saccharification and fermentation (SSF) (Treatment C) (Fig 1). Enzyme cocktail 

application was at 400 ppm. While optimal enzyme temperature and pH conditions were 

maintained for Treatments A and B, SSF conditions prevailed for Treatment C. 

The general procedure followed for corn dry-grind liquefaction and fermentation, along 

with enzymatic treatments, where indicated, was as following: 1:2 weight % ratio of ground 

corn: distilled water along with 0.67 mL of α-amylase Spezyme Xtra were mixed in a 2-L 

Erlenmeyer flask for a total weight of 1000 g. Liquefied occurred at 82°C first for 1 h with 

constant agitation followed by autoclaving (121°C, 103kPa, 20 min) and another 3 h liquefaction 

at 82°C with second application of α-amylase Spezyme Xtra (1 mL). The liquefied corn mash 

was cooled down to 30°C and pH-adjusted to 4.0 by using 6.0 N sulfuric acid. The evaporative 

weight loss during liquefaction was readjusted by adding sterile water to maintain the initial 

water: solid ratio. 

SSF of pretreated slurry was carried with addition of glucoamylase Spiriyme at 0.04% 

w/w of corn, (NH4)2SO4 at 150 ppm, antibiotic Lactrol at 0.004% w/w corn, and 0.67 g of dry 

yeast. The flask was capped with cotton and aluminum foil and incubated at 30°C for 72 h in 

incubator shaker (Innova 4300, New Brunswick Scientific, NJ) at 150 rpm. Two replications 

were carried for each treatment. Weight loss was recorded periodically during fermentation and 

was related to ethanol yields following the relationship proposed by Wang (2009a): ethanol yield 

(g per 100 g dry corn) =100 x (46 x total CO2 production, g/44)/original dry corn mass, g. The 

initial ethanol production rates, g ethanol per 100 g dry corn per h, were calculated from the 
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slope of the linear portion of the ethanol yield versus time curves during initial periods, mostly 6 

to 20 h. 

2.3 Protease and phytase treatment (Treatment D) 

Beside the study on BluZy-P XL treatment conditions, the effect of adding protease and 

phytase during SSF on process performance was also examined. Protease at 0.7 μL/g dry solid 

and 1.4 ppm of phytase was added during 72-h fermentation with the best performing BluZy-P 

XL treatment (previous section). 

2.4 Post-fermentation separations and chemical analyses 

Ethanol was distilled off by boiling and whole stillage (WS) was subjected to a simulated 

industrial decanting process called the multiple wash centrifugal filtrations (MWCF) for efficient 

partition of wet grains and thin stillage (Wang, 2009b). In short, 100-g WS in a permeable pouch 

was put in a cup-like assembly that was spun in a swing-bucket centrifuge at 3000xg. The 

supernatant was used to wash more fines from the wet solids by turning the device upside down 

and gently shaking without disassembling the device. This was repeated to wash the wet grains 

four times and finally to obtain wet cake (WC) and thin stillage (TS); wet yields and solid 

content of fractions were measured by drying at 105°C overnight. Total oil content was 

determined in WS and WC following acid hydrolysis method (AOAC 922.06). Representative 

wet cake samples from all enzymatic treatments were dried and analyzed in duplicate for extent 

of fiber modification using ANKOM procedure (ANKOM Technology Corporation, Macedon, 

NY). Cell solubles, cellulose and hemicellulose content in dry samples were calculated as: 

Cellulose = % Acid Detergent Fiber (ADF) - % Acid Detergent Lignin (ADL) 
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Hemicellulose= %Neutral Detergent Fiber (NDF) - %Acid Detergent Fiber (ADF) 

Cell solubles = 1- %Neutral Detergent Fiber (NDF) 

The % values thus calculated reflected values based on dry cake samples, so they were 

recalculated on the basis of 100 g dry corn weight to account for weight loss due to hydrolytic 

and other enzyme treatments at various processing stages. 

2.5 Calculations 

At the end of fermentation, yield of wet grains and oil distribution in fractions were calculated 

as:  

Wet yield of WC or TS (%) = [(Weight of WC or TS, g as is) × 100] / (wet weight of WS, g) 

Dry solids (%) = [(Dry matter in WC or TS, g)×100] / (Dry matter in WS, g) 

Oil in WC (%) = [(Oil in WC, g as is) × 100] / (Oil in WS, g) 

Oil in TS (%) = [(1- Oil in WC, g) x 100] / (Oil in WS, g) 

2.6 HPLC quantitation of xylose in enzyme hydrolysates and ethanol in stillage 

Ethanol in whole stillage and xylose concentrations in hydrolysates were measured using an 

HPLC with HyperREZ XP Carbohydrate H+ 8 μm column (300×7.7 mm) and RI detector 

(Accela ultra high pressure; Fisher Scientific, USA), respectively. Injection was at 400 μL/min 

with 0.05 M sulfuric acid in water as a mobile phase at 70°C. Data was collected using 

ChromQuest system (EZChrom Elite, v 3.2.1, Scientific Software, Inc.). 

3 Results and discussion 
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3.1 Best working conditions for BluZy-P XL enzyme cocktail: 

The experimental enzyme cocktail BluZy-P XL was evaluated first for best working 

conditions in corn dry grind ethanol process by comparing the concentrations of xylose in the 

200-mL corn slurry obtained at the end of 1.5 h incubation, since the enzyme had mainly 

xylanase activity (Fig 2). In general, there was significant trend in increase of xylose 

concentrations when treated between pH 3.8 and 5.2 and temperatures 35°C to 50°C. The xylose 

concentration at pH 5.2 and 50°C was the highest at 0.37 mg/mL; higher temperatures possibly 

help degrade cell matrix along with dissolution of hemicelluloses and provide more accessibility 

for enzymes to form a complex with substrate (Limayem, 2012; Poletto, 2013). It is known that 

higher temperatures enhance rates of enzymatic reactions for kinetics reasons and formation of 

enzyme-substrate complexes (Cornish-Bowden, 2012). In short, hydrolytic enzymes affected 

non-starch polysaccharides in corn matrix with temperature effect prominent than pH. The 

suitable condition for addition of enzymes BluZy-P XL was considered to be 50°C at corn slurry 

pH of ≈5.2-5.6. 

3.2 Effect of enzyme systems on corn dry-grind process: 

3.2.1 Fermentation performance 

The effect of addition of enzymes cocktail BluZy-P XL and/or protease/phytase 

combination on corn dry-grind process was evaluated by treating corn mash at different process 

stages at 50°C without pH adjustment as the slurry had pH of pH≈5.5 (Fig. 1). The ethanol 

production profile for these treatments and final yields are shown in Figure 3 and Table 1, 

respectively. In general, treatment at any process stage by BluZy-P XL, which had 

predominantly xylose/ hemicellulose hydrolysis activity, improved ethanol production rates and 
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final concentrations compared to the control; however, a significant change in ethanol production 

rate was observed only for enzyme treatment after liquefaction (Treatment B; p<0.05). Treatment 

B resulted in production rate of 0.71±0.01 g of ethanol/100g of dry corn⋅h, which was higher 

than rate from pre-liquefaction stage enzyme treatment (0.63±0.00 g/g⋅h, Treatment A). Activity 

of NSP hydrolyzing enzymes (BluZy-P XL) in post-amylolytic liquefied mash may benefit from 

the easy substrate accessibility since complexity of cell wall network is reduced. Compared with 

treatment during fermentation at 30°C (Treatment C), enzyme cocktail was more effective at 

50°C; however, the limitation of enzyme performance in Treatment A (post-grinding) was 

noticeable. The tight cellulosic/hemicellulosic structure in cell walls before liquefaction might 

have made it difficult to degrade by BluZy-P XL. In addition, the enzymatic treatments from 

liquefaction through fermentation (Treatment B) was more effective than Treatment C, due to 

possible greater accessibility by glucoamylase during saccharification. 

In addition to hydrolytic enzyme mix, protease and phytase supplementation during SSF 

(Treatment D) was found to be beneficial for corn dry-grinding process for ethanol. The ethanol 

production rate with protease and phytase addition increased to 1.16g/ 100 g dry corn per•h, with 

final ethanol yield of 127.54±0.17 g/L (Table 1). Degradation of protein with enzyme in corn cell 

matrix can increase the accessibility of starch and other substrates to enzymes (Lamsal and 

Johnson 2012). In addition, mineral supplement from phytic acid degradation could improve 

efficiency of ethanol production by making more ion (Ca2+) available for glucoamylase activity 

(Hruby, 2012). This suggests the need for these types of enzymes in ethanol process 

supplementing non-starch hydrolytic enzymes. 

3.2.2 Solids distribution in coproduct fractions 
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Table 2 shows the effect of hydrolytic enzymes on wet solid recovery and solid contents, 

and oil partitioning in wet cake and thin stillage fractions as % of whole stillage. Treatments with 

enzyme cocktail BluZy-P XL and protease/phytase addition (Treatment D) had significantly 

increased solid partitioning in thin stillage compared to no-enzyme controls. The wet yield (total 

wet weight) of thin stillage ranged from 87.88-93.06%, with the highest from Treatment D, an 

increase of 1.6% compared with best BluZy-P XL treatments (Treatments B or C) and increase 

of 5.2% compared with no enzyme control. Consequently, the solids in wet cake reduced 

accordingly for the treatments, which explained the increase of dry matter in thin stillage. The 

degrading of fibers released more solubles into liquid fraction. The solid partitioned in thin 

stillage (dry matter) ranged from 59.25-69.70% with highest from protease and phytase addition 

(Treatment D).  

3.2.3 Oil Partition 

Table 2 also shows that addition of xylolytic enzyme cocktail BluZy-P XL significantly 

increased oil partitioned into thin stillage from 32.13%±1.50 (control) to 49.83%±2.44, 

67.71%±3.64, and 54.57%±1.82 for Treatments A, B, and C, respectively. Treatment by enzyme 

cocktail after liquefaction (Treatment B) resulted in the highest oil content in thin stillage, and 

consequently, lower oil percentage in wet cake fractions (32.58±0.56%). Additional enzyme 

treatment with protease and phytase (Treatment D) resulted in significantly higher oil 

partitioning in thin stillage (77.8% w/w) compared with other enzyme treatments. Oil in different 

forms whole stillage can explain the oil partitioning after enzyme treatments. The oil in whole 

stillage can be in present in four different forms: oil-in-water emulsion, oil inside unbroken oil 

bodies (oleosomes), oil droplet attached to hydrophobic particle surfaces, and oil in unbroken 

(bigger) cells of germs and endosperm (Majoni et al, 2011a). Upon decanting of whole stillage, 
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emulsified oil and oil in oleosomes will partition into thin stillage, whereas, oil in unbroken 

matrices and that adhering to larger particles partition with wet cake. Non-starch carbohydrate 

hydrolysis enzymes, like BluZy-P XL, can hydrolyze cell walls of unbroken cells and release oil 

from them. Protease can hydrolyze protein particles and free the attached oil droplets as well as 

act on stabilizing proteins like oleosins in thin stillage emulsion. They all contribute to increase 

oil partitioning into thin stillage after decanting, and most of oil is recovered as free oil. 

3.2.4 Distillers’ wet grain after enzyme treatments 

The wet distillers grains from enzyme treatments were dried after centrifugation and 

distribution of non-starch carbohydrates components were determined as weight % of dried 

samples. Since yields of wet distillers’ grains at the end of enzyme treatments differed based on 

extent of hydrolysis, we expressed the constituent compositions (cellulose, hemicellulose, lignin) 

as % of starting 100 g dry corn. Hydrolysis of non-starch carbohydrate by BluZy-P XL resulted 

in lower amount of fiber content (both NDF and ADF), except for Treatment A, which had higher 

values than control group (Table 3). Control and Treatment A had significantly higher amount of 

fiber components than other treatments, whereas, protease/phytase treatment (Treatment D) had 

lowest. Treatments B and C were better stages than A for BluZy-P XL treatment because lower 

amount of non-digestible carbohydrates were found in wet grains. Additional protease/phytase 

addition during fermentation decreased that even further. It may be explained by the further 

structural decomposition leading to improvement in enzymes activity. Protease hydrolyzes 

protein and expose cell wall carbohydrates to other enzymes like BluZy-P XL. Moreover, 

phytase can hydrolyze phytic acid, which can chelate with metal and may reduce or inhibit 

enzyme activity, especially chelation of calcium, which could be detrimental to glycoamylase-

type of enzymes. Decreasing phytic acid content in corn slurry can also improve activity of 



www.manaraa.com

 
 

13 

carbohydrate hydrolysis enzymes (Mikulski et al, 2014). Cell solubles, which is the most 

digestible part in DDGS, also decreased with enzyme treatments. BluZy-P XL and 

protease/phytase treatments degraded larger molecules like polysaccharides, proteins; 

partitioning of these lower molecular weight molecules occurred in thin stillage fraction after 

decanting. Cell solubles, including protein, lipid, sugars and starch may also have been released 

from wet grains during enzyme hydrolysis and moved to thin stillage. The solid mass distribution 

in thin stillage and wet cake (Table 2) supports this explanation. 

4 Conclusion: 

This study demonstrated that incorporation of hydrolytic enzymes, including non-starch 

hydrolase, protease, and phytase, at their optimized conditions and process stages can promote 

fermentation performance for corn dry-grind process for ethanol. It can also enhance partitioning 

of solids and oil into liquid fraction (thin stillage) and produce DDGS with lower amounts of 

nondigestible carbohydrates. Best process performance was obtained with 1.5h incubation with 

BluZy-P XL after liquefaction (50°C) and protease/phytase addition during fermentation. This 

also resulted in favorably modified distillers grains that could be envisioned to have uses in 

monogastric feeding. 
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Figure 1. Flow chart for BluZy-P XL enzymatic treatment at different processing stages for corn 

dry-grind ethanol process. Treatments A, B, and C stand for xylolytic enzymes incubation at pre-

liquefaction, post-liquefaction, and during-fermentation, respectively. Treatment D was a 

combination of Treatment B with protease and phytase supplementation during simultaneous 

saccharification and fermentation.  
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Figure 2. Xylose concentration from BluZy-P XL treatments at various pH and temperature  

conditions. The error bars represent the standard deviation of two replicates with three 

measurements each. Bars sharing same letter are not significantly different (p-value ≤ 0.05). 
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Figure 3. Ethanol production profiles for control, BluZy-P XL treatments (A, B, and C), and 

protease and phytase addition during fermentation (Treatment D). The error bars represent the 

standard deviation of two replicates with three measurements each.  
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Table 1. Fermentation performance as result of different enzymatic treatments 

 
Initial ethanol 
production rate (g /100g 
dry corn-h) 

Final ethanol yields (g 
/100g dry corn) 

Final ethanol 
yield by HPLC  
(g/L) 

Control 0.54±0.03a 29.42±1.68ab 109.52±0.35a 
Treatment A 0.63±0.00a 32.85±0.15a 121.20±0.05b 
Treatment B 0.71±0.01b 31.99±0.00b 115.74±0.16a 
Treatment C 0.63±0.02a 32.01±0.02b 117.00±0.25a 
Treatment D 1.16±0.00c 35.11±0.02c 127.54±0.17c 

* Treatment A, B, and C refer to BluZy-P XL treatments at post-grinding, liquefaction, and 

simultaneous saccharification and fermentation, respectively. Treatment D refers to BluZy-P XL 

treatment supplemented with protease/phytase addition during simultaneous saccharification and 

fermentation. Values sharing same letters are not significantly different (p-value ≤ 0.05) 
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Table 2. Weight distribution and oil partitioning in wet cake and thin stillage fractions relative to 
whole stillage: 

 

 

 

 

 

 

 

 

 

 

Treatment A, B, and C refer to BluZy-P XL treatments at post-grinding, liquefaction, and 

simultaneous saccharification and fermentation, respectively. Treatment D refers to BluZy-P XL 

treatment supplemented with protease/phytase addition during simultaneous saccharification and 

fermentation. Values sharing same letters are not significantly different (p-value ≤ 0.05).  

 
Wet Cake  

Wet Yield 
(%wt.) 

% Solid 
Content 

Dry Matter 
Yield (%wt.) 

Oil 
Partitioning 

(%wt.) 
Control 11.88±0.27a 41.79±0.17a 43.99±1.01a 67.87±1.50a 

Treatment A1 11.61±0.13a 41.79±0.50ab 42.26±2.20a 50.17±2.44b 
Treatment B 8.53±0.09c 42.48±0.11c 32.58±0.56b 32.29±3.64d 
Treatment C 8.37±0.09b 42.45±0.35bc 32.53±0.44b 45.43±1.82c 
Treatment D2 6.71±0.27c 42.80±0.39b 30.46±1.18c 22.20±1.68c 

 Thin Stillage 
Control 87.88±0.21a 8.07±0.17ab 62.93±2.54a 32.13±1.50a 

Treatment A 88.56±0.37b 7.74±0.32a 59.25±3.26a 49.83±2.44b 
Treatment B 91.23±0.19d 8.29±0.05b 67.93±1.14b 67.71±3.64c 
Treatment C 91.50±0.08c 8.17±0.10b 68.48±0.74b 54.57±1.82d 
Treatment D 93.06±0.34c 7.06±0.08b 69.70±1.11c 77.80±1.68e 
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Table 3: Fiber distribution in wet grains (in dry basis) produced from 100 g dry corn after 

enzyme treatment at different stages 

 Control Treatment A Treatment B Treatment C Treatment D 
NDF (g) 3.81b 4.48a 2.98c 2.76cd 2.26d 
ADF (g) 0.96ab 1.15a 0.71bc 0.63c 0.65c 
ADL (g) 0.11ab 0.13a 0.09ab 0.08b 0.07b 
Cell solubles (g) 9.97a 8.8b 6.92c 6.98c 5.51d 
hemicellulose (g) 2.84b 3.33a 2.28c 2.13c 1.61d 
Cellulose (g) 0.85a 1.02a 0.62b 0.55b 0.58b 
Lignin (g) 0.12 0.13 0.09 0.08 0.07 

NDF, ADF, and ADL referred to neutral detergent fiber, acid-detergent fiber, and acid-detergent 

lignin. Treatment A, B, and C refer to BluZy-P XL treatments at post-grinding, liquefaction, and 

simultaneous saccharification and fermentation, respectively. Treatment D refers to BluZy-P XL 

treatment supplemented with protease/phytase addition during simultaneous saccharification and 

fermentation. Values sharing same letters are not significantly different (p-value ≤ 0.05).  
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